122 research outputs found

    Systematic Identification of Oncogenic EGFR Interaction Partners

    Get PDF
    The Epidermal Growth Factor Receptor (EGFR) is a receptor tyrosine kinase that - once activated upon ligand binding - leads to receptor dimerization, recruitment of protein complexes and activation of multiple signaling cascades. The EGFR is frequently overexpressed or mutated in various cancers leading to aberrant signaling and tumor growth. Hence, identification of interaction partners that bind to mutated EGFR can help identify novel targets for drug discovery. Here, we used a systematic approach to identify novel proteins that are involved in cancerous EGFR-signaling. Using a combination of high-content imaging and a mammalian membrane two-hybrid protein-protein interaction (MaMTH) method, we identified 8 novel interaction partners of EGFR, out of which half strongly interacted with oncogenic, hyperactive EGFR variants. One of these, TACC3, stabilizes EGFR on the cell surface, which results in an increase in downstream signaling via the MAPK and AKT pathway. Depletion of TACC3 from cells using shRNA knockdown or small molecule targeting reduced mitogenic signaling in non-small cell lung cancer cell lines, suggesting that targeting TACC3 has potential as a new therapeutic approach for non-small cell lung cancer

    SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents

    Get PDF
    The patent literature is a rich catalog of biologically relevant chemicals; many public and commercial molecular databases contain the structures disclosed in patent claims. However, patents are an equally rich source of metadata about bioactive molecules, including mechanism of action, disease class, homologous experimental series, structural alternatives, or the synthetic pathways used to produce molecules of interest. Unfortunately, this metadata is discarded when chemical structures are deposited separately in databases. SCRIPDB is a chemical structure database designed to make this metadata accessible. SCRIPDB provides the full original patent text, reactions and relationships described within any individual patent, in addition to the molecular files common to structural databases. We discuss how such information is valuable in medical text mining, chemical image analysis, reaction extraction and in silico pharmaceutical lead optimization. SCRIPDB may be searched by exact chemical structure, substructure or molecular similarity and the results may be restricted to patents describing synthetic routes. SCRIPDB is available at http://dcv.uhnres.utoronto.ca/SCRIPDB

    Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology

    Get PDF
    Placental abnormalities are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ∼5% of all pregnancies. An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human and mouse placenta show structural similarities, but there have been no systematic attempts to assess their molecular similarities or differences. We collected protein and mRNA expression data through shot-gun proteomics and microarray expression analysis of the highly vascular exchange region, microdissected from the human and mouse near-term placenta. Over 7000 ortholog genes were detected with 70% co-expressed in both species. Close to 90% agreement was found between our human proteomic results and 1649 genes assayed by immunohistochemistry for expression in the human placenta in the Human Protein Atlas. Interestingly, over 80% of genes known to cause placental phenotypes in mouse are co-expressed in human. Several of these phenotype-associated proteins form a tight protein–protein interaction network involving 15 known and 34 novel candidate proteins also likely important in placental structure and/or function. The entire data are available as a web-accessible database to guide the informed development of mouse models to study human disease

    A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients

    Get PDF
    Preoperative chemoradiotherapy is widely used to improve local control of disease, sphincter preservation and to improve survival in patients with locally advanced rectal cancer. Patients enrolled in the present study underwent preoperative chemoradiotherapy, followed by surgical excision. Response to chemoradiotherapy was evaluated according to Mandard's Tumor Regression Grade (TRG). TRG 3, 4 and 5 were considered as partial or no response while TRG 1 and 2 as complete response. From pretherapeutic biopsies of 84 locally advanced rectal carcinomas available for the analysis, only 42 of them showed 70% cancer cellularity at least. By determining gene expression profiles, responders and non-responders showed significantly different expression levels for 19 genes (P < 0.001). We fitted a logistic model selected with a stepwise procedure optimizing the Akaike Information Criterion (AIC) and then validated by means of leave one out cross validation (LOOCV, accuracy = 95%). Four genes were retained in the achieved model: ZNF160, XRCC3, HFM1 and ASXL2. Real time PCR confirmed that XRCC3 is overexpressed in responders group and HFM1 and ASXL2 showed a positive trend. In vitro test on colon cancer resistant/susceptible to chemoradioterapy cells, finally prove that XRCC3 deregulation is extensively involved in the chemoresistance mechanisms. Protein-protein interactions (PPI) analysis involving the predictive classifier revealed a network of 45 interacting nodes (proteins) with TRAF6 gene playing a keystone role in the network. The present study confirmed the possibility that gene expression profiling combined with integrative computational biology is useful to predict complete responses to preoperative chemoradiotherapy in patients with advanced rectal cance

    Sequencing identifies a distinct signature of circulating microRNAs in early radiographic knee osteoarthritis

    Get PDF
    OBJECTIVE: MicroRNAs act locally and systemically to impact osteoarthritis (OA) pathophysiology, but comprehensive profiling of the circulating miRNome in early vs late stages of OA has yet to be conducted. Sequencing has emerged as the preferred method for microRNA profiling since it offers high sensitivity and specificity. Our objective is to sequence the miRNome in plasma from 91 patients with early [Kellgren-Lawrence (KL) grade 0 or 1 (n = 41)] or late [KL grade 3 or 4 (n = 50)] symptomatic radiographic knee OA to identify unique microRNA signatures in each disease state. DESIGN: MicroRNA libraries were prepared using the QIAseq miRNA Library Kit and sequenced on the Illumina NextSeq 550.Counts were produced for microRNAs captured in miRBase and for novel microRNAs. Statistical, bioinformatics, and computational biology approaches were used to refine and interpret the final list of microRNAs. RESULTS: From 215 differentially expressed microRNAs (FDR \u3c 0.01), 97 microRNAs showed an increase or decrease in expression in ≥85% of samples in the early OA group as compared to the median expression in the late OA group. Increasing this threshold to ≥95%, seven microRNAs were identified: hsa-miR-335-3p, hsa-miR-199a-5p, hsa-miR-671-3p, hsa-miR-1260b, hsa-miR-191-3p, hsa-miR-335-5p, and hsa-miR-543. Four novel microRNAs were present in ≥50% of early OA samples and had 27 predicted gene targets in common with the prioritized set of predicted gene targets from the 97 microRNAs, suggesting common underlying mechanisms. CONCLUSION: Applying sequencing to well-characterized patient cohorts produced unbiased profiling of the circulating miRNome and identified a unique panel of 11 microRNAs in early radiographic knee OA

    The IMEx coronavirus interactome: an evolving map of Coronaviridae-host molecular interactions

    Get PDF
    The current coronavirus disease of 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2, has spurred a wave of research of nearly unprecedented scale. Among the different strategies that are being used to understand the disease and develop effective treatments, the study of physical molecular interactions can provide fine-grained resolution of the mechanisms behind the virus biology and the human organism response. We present a curated dataset of physical molecular interactions focused on proteins from SARS-CoV-2, SARS-CoV-1 and other members of the Coronaviridae family that has been manually extracted by International Molecular Exchange (IMEx) Consortium curators. Currently, the dataset comprises over 4400 binarized interactions extracted from 151 publications. The dataset can be accessed in the standard formats recommended by the Proteomics Standards Initiative (HUPO-PSI) at the IntAct database website (https://www.ebi.ac.uk/intact) and will be continuously updated as research on COVID-19 progresses
    corecore